What is Shot peening induced residual stresses using ABAQUS?
Shot-peening is a cold working process used to impart compressive residual stresses in the exposed surface layers. Also, it is used mainly to improve the fatigue life of metallic components.
Results are accomplished by bombarding the surface of the component with small spherical shots made of hardened cast-steel, conditioned cut-wire, and glass or ceramic beads at a relatively high velocity (40±70 m/s). After contact between the target and the shot has ceased, a small plastic indentation is formed causing stretching of the top layers of the exposed surface.
Upon unloading, the elastically stressed sub-surface layers tend to recover their original dimensions, but the continuity of the material in both zones, the elastic and the plastic, do not allow this to occur. Consequently, a compressive residual stress field followed by tensile is trapped in the treated component. This surface compressive residual stress field is highly effective in preventing premature failure under conditions of cyclic loading. Fatigue failure generally propagates from the upper-most surface of the component and usually starts in a region that is subjected to high tensile stresses.
Shot peening, Finite element modeling using Abaqus/CAE
Despite its importance to the aerospace and automobile industries, little or no attention has been devoted to the accurate modeling of the process. Shot peening is a very complex process to model numerically, involving dynamic analysis of fast-moving shots impacting on a metallic component which can often have complex geometry. There are a significant number of parameters involved in shot peening that need to be controlled and regulated in order to produce a more beneficial compressive residual stress distribution within the component.
These parameters can be categorized into three groups relating to the shot, the component, and the process.Ā The shot parameters include size, density, shape, impact velocity, rotary inertia, incident angle, and hardness.Ā The component parameters include geometry, initial yield stress, work-hardening characteristics, and hardness.
The process parameters include mass flow rate, air pressure, angle of attack, the distance between nozzle and component, and percentage coverage. In order to control the resulting residual stress pattern in peened components, it would be highly beneficial to establish quantitative relationships between these parameters and residual stress characteristics.
This package describes a three-dimensional dynamic finite element (FE) study of single-shot impacting on a metallic component using Abaqus/CAE software. The prediction is validated by comparison with results from the published literature by Meguid et al. (1999).
Mahenk –
These project result match nearly to the research paper, and team worked rwally good and cooperate and clear the doubts.
Engfara –
Really, I’m so satisfied about services, I asked them many addition tasks, modifications and they help me a lot. I highly recommended their services.
Engfara –
I benefited a lot from this project and it helped me pass my studies, I really recommend their services.
Mohamad Khorashad –
Thank you. We hope you continue your successful research path
Pedram Gholami –
abaqus tutorial video